Solid-Phase Synthesis of Cyclooctadepsipeptide N-4909 Using a Cyclization-Cleavage Method with Oxime Resin

TOSHIO SUGURO[†] and MAKOTO YANAI[†]

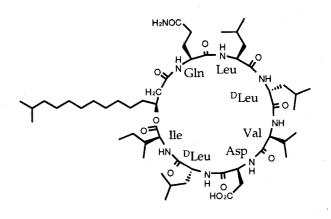
1st Pharmaceutical Laboratory, Pharmaceutical Research Laboratories, Nisshin Flour Milling Co., Ltd., 5-3-1 Tsurugaoka, Ohi-machi, Iruma-gun, Saitama 356-8511, Japan †Research Laboratories, Nisshin Kyorin Pharmaceutical Co., Ltd., 5-3-1 Tsurugaoka, Ohi-machi, Iruma-gun, Saitama 356-8511, Japan

(Received for publication May 25, 1999)

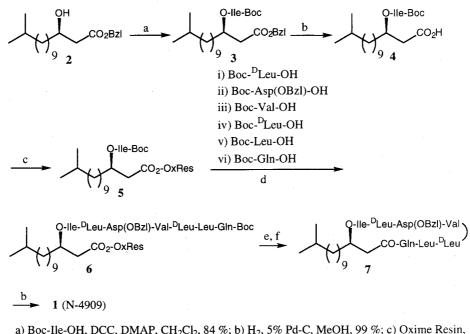
N-4909 (1), which has a stimulating activity on apolipoprotein E secretion in human hepatoma Hep G2 cells, was isolated from the culture broth of *Bacillus* sp. No. 4691 by HIRAMOTO *et al.*¹⁾ This compound (1) was also isolated from *Bacillus* sp. A1238 as an inhibitor of acyl-CoA; cholesterol acyltransferase by HASUMI *et al.*²⁾ This cyclooctadepsipeptide (1) and its diastereomer were synthesized for the first time using solution phase chemistry by our group³⁾.

To develop a structure-activity relationship, we needed a library of analogs of this compound and decided to use a combinatorial technology. To prepare a combinatorial library of its analogs, we had to develop a more concise method than the previous solution phase chemistry because the latter required multiple steps and extended time. LEE⁴⁾ developed a method to prepare cyclooctadepsipeptide PF1022A analogs using the oxime resin which was developed by KAISER⁵⁾ and used to make cyclic peptides^{6,7)}. LEE prepared a tetradepsipeptide in advance to avoid an intramolecular displacement.

We used his method to examine the posibility of creating the desired cyclic depsipeptide libraries. We chose optically active (*R*)-3-(*N*-Boc-isoleucinyl)oxy-13-methyl-tetradecanoic acid (4) as a starting material which was prepared by reacting Boc-Ile-OH with (*R*)-benzyl 3-hydroxy-13methyltetradecanoate (2)³⁾ and then deprotecting the benzyl group by hydrogenation. First, the compound (4) was coupled with the oxime resin using *O*-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) to give oxime resin (R)-3-(N-Boc-isoleucinyl)oxy-13-methyl-tetradecanoate (5). This was deprotected with TFA/methylene chloride (CH₂Cl₂) and coupled with Boc-D-Leu-OH using HATU. This procedure was repeated until preparing oxime resin (R)-3-(N-Boc-Gln-Leu-D-Leu-Val-Asp(OBzl)-D-Leu-Ile)oxy-13-methyl-tetradecanoate (6). After deprotection of the Boc with TFA/CH₂Cl₂, this was cleaved along with cyclization using triethylamine and AcOH⁸⁾ to yield cyclo{13-methyl-(R)-3-[Gln-Leu-D-Leu-Val-Asp(OtBu)-D-Leu-O]-tetradecanoate} (7) in 43% yield. According to the confirmation at each step by Kaiser test⁹⁾, all reactions proceeded almost quantitatively. The cyclized depsipeptide (7) was treated with 5% Pd-C under H₂ atmosphere to remove the benzyl protection group of Asp. There were no purification process until the last stage. The desired product (1) was 63% pure by HPLC analysis. The crude product was purified by HPLC to afford N-4909 (1) in 45% yield. ($[\alpha]_{D}^{26}$ -13.1° (c 1.26, CH₃OH). [lit.¹) $[\alpha]_{D}^{26} - 11.2^{\circ}$ (c 0.414, CH₃OH)]) The ¹H NMR and other physical data were identical to those of natural product.


In conclusion, we have found that oxime resin was very useful for preparing N-4909 (1) concisely and this method would be taken to develop a combinatorial library of N-4909 analogs.

Experimental


General

Optical rotations were obtained on a JASCO DIP-370 digital polarimeter. ¹H NMR spectra were recorded at

Fig. 1. Structure of N-4909 1.

Scheme 1. Synthesis of N-4909 using oxime resin.

a) Boc-Ile-OH, DCC, DMAP, CH_2Cl_2 , 84 %; b) H_2 , 5% Pd-C, MeOH, 99 %; c) Oxime Resin, HATU, DIEA; d) 1) 25 % TFA, CH_2Cl_2 , 2) amino acid, HATU, DMF; e) 25 % TFA, CH_2Cl_2 ; TEA, AcOH:

400 MHz on a JEOL JNM-EX400 spectrometer. ESI-MS spectra were obtained on a Micromass Quattro II instrument.

Reagents

Unless otherwise stated, all reagents and solvents were obtained commercially as reagent grade products and used without further purification.

(*R*)-Benzyl 3-(*N*-Boc-isoleucinyl)oxy-13-methyltetradecanoate (3)

To a stirred and cooled (0°C) solution of (*R*)-benzyl 3hydroxy-13-methyltetradecanoate (**2**) (1.59 g, 4.56 mmol), Boc-Ile-OH \cdot 1/2H₂O (1.20 g, 5.02 mmol, 1.1 eq) and 4-(dimethylamino)pyridine (39 mg, 0.32 mmol, 0.07 eq) in CH₂Cl₂ (30 ml) was added 1,3-dicyclohexylcarbodiimide (1.41 g, 6.84 mmol, 1.5 eq) at an ice cooled temperatre. The mixture was stirred at 0°C for 2 hours and then at room temperature for 3 days. After filtration and evaporation, the residue was taken up to AcOEt and 10% aq. citric acid. The separated organic layer was rinsed with H₂O, 5% aq. NaHCO₃ and H₂O, and then dried over anhydrous Na₂SO₄. After removal of the solvent, the crude product was purified by chromatog. on silica gel (50 g), eluting with Hex: AcOEt= $200:0\sim 25$, to yield the product 2.14 g (84%).

 $[\alpha]_D^{25}$ +4.47° (*c* 1.03, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.29~7.40 (5H, m, Ar-*H*), 5.27 (1H, quint., *J*=6.3 Hz, C*H*(CH₂)₂O), 5.12 (2H, s, C*H*₂Ph), 4.99 (1H, d, *J*=8.8 Hz, N*H*), 4.22 (1H, dd, *J*=4.4, 8.8 Hz, C*H*NHCO), 2.69 (1H, dd, *J*=6.8, 16 Hz, C*H*₂CO₂), 2.59 (1H, dd, *J*=5.9, 16 Hz, C*H*₂CO₂), 1.84 (1H, br s, C*H*(CH₃)₂), 1.62 (2H, br s, C*H*₂), 1.44 (9H, s), 1.04~1.51 (19H, m, C*H*₂), 0.92 (3H, d, *J*=6.3 Hz, CH(CH₃)₂), 0.89 (3H, t, *J*=7.3 Hz, CH(CH₃)₂), 0.86 (6H, d, *J*=6.3 Hz, CH(C*H*₃)₂). ESI-MS *m*/*z* 562 (M+H)⁺.

(R)-3-(N-Boc-isoleucinyl)oxy-13-methyl-tetradecanoic acid (4)

A suspension of the benzyl ester (3) (2.10 g, 3.74 mmol) and 5% Pd-C (0.42 g) in MeOH (80 ml) was reacted under H₂ atomosphere ($\sim 2 \text{ kg/cm}^2$) at room temperature for 1 hour. After filtration and evaporation, the product was obtained 1.75 g (99 %).

¹H NMR (400 MHz, CDCl₃) δ 5.25 (1H, quint., *J*=6.2 Hz, *CH*(CH₂)₂O), 5.02 (1H, d, *J*=8.3 Hz, *NH*), 4.20 (1H, dd, *J*=4.9, 8.8 Hz, *CH*NHCO), 3.16 (1H, br s, CO₂H), 2.67 (1H, dd, *J*=6.8, 16 Hz, *CH*₂CO₂), 2.61 (1H, dd, *J*=5.7,

16 Hz, CH_2CO_2), 1.85 (1H, br s, $CH(CH_3)_2$), 1.57~1.75 (2H, m, CH_2), 1.44 (9H, s), 1.06~1.55 (19H, m, CH_2), 0.94 (3H, d, J=7.3 Hz, $CH(CH_3)_2$), 0.91 (3H, t, J=7.8 Hz, $CH(CH_3)_2$), 0.86 (6H, d, J=6.3 Hz, $CH(CH_3)_2$). ESI-MS m/z 472 (M+H)⁺.

Oxime Resin (R)-3-(N-Boc-isoleucinyl)oxy-13-methyltetradecanoate (5)

To a stirred (by Argon gas) suspension of 1.00 g (2.0 mequiv.) of oxime resin in CH₂Cl₂ (20 ml) was added (*R*)-3-(*N*-Boc-isoleucinyl)oxy-13-methyl-tetradecanoic acid (4) (472 mg, 1.00 mmol) and HATU (380 mg, 1.00 mmol) followed by addition of diisopropylethylamine (190 mg, 1.5 mmol) dropwise at room temperature. After stirring for 18 hours at room temperature, the suspension was filtered off and the resin was washed twice with CH₂Cl₂ (20 ml), twice with 20 ml of CH₂Cl₂ : ethyl alcohol (1 : 1) solution and twice with CH₂Cl₂ (20 ml), and dried under reduced pressure. The weight of the resin was increased about 450 mg which showed the reaction was proceeded quantitatively.

Oxime Resin (*R*)-3-(*N*-Boc-Gln-Leu-D-Leu-Val-Asp(OBzl)-D-Leu-Ile)oxy-13-methyl-tetradecanoate (**6**)

The resin (0.5 mmol) was suspended in 25% TFA in CH_2Cl_2 solution (20 ml). The mixture was stirred for 30 minutes at room temperature and filtered off. The resin was washed twice with CH_2Cl_2 (20 ml), isopropyl alcohol (20 ml), 4 times with CH_2Cl_2 (20 ml) and then dried under reduced pressure.

To a stirred (by Argon gas) suspension of the obtained resin in DMF (20 ml) was added Boc-D-Leu-OH \cdot H₂O (374 mg, 1.50 mmol) and HATU (380 mg, 1.00 mmol) followed by addition of diisopropylethylamine (420 mg, 3.25 mmol) dropwise at room temperature. After stirring for 40 minutes at room temperature, the suspension was filtered off and the resin was washed 4 times with DMF (20 ml) and twice with CH₂Cl₂ (20 ml), and dried under reduced pressure. The small portion of resin was tested by Kaiser reagent to see the reaction was completed.

This procedure was repeated using Boc-Asp(OBzl)-OH, Boc-Val-OH, Boc-D-Leu-OH, Boc-Leu-OH, Boc-Gln-OH instead of Boc-D-Leu-OH to yield oxime resin (*R*)-3-(*N*-Boc-Gln-Leu-D-Leu-Val-Asp(OBzl)-D-Leu-Ile)oxy-13methyl-tetradecanoate (**6**).

Cyclo{13-methyl-(*R*)-3-[Gln-Leu-D-Leu-Val-Asp(OtBu)-D-Leu-O]-tetradecanoate} (7)

To a stirred (by Argon gas) suspension of oxime resin (R)-3-(N-Boc-Gln-Leu-D-Leu-Val-Asp(OBzl)-D-Leu-

Ile)oxy-13-methyl-tetradecanoate (6) (0.5 mmol) in DMF (20 ml) was added AcOH (60 μ l, 1.00 mmol) and triethylamine (139 μ l, 1.00 mmol). After stirring for 24 hours at room temperature, the suspension was filtered off and the resin was washed with DMF (20 ml). The combined organic solution was evaporated. The residue was treated with AcOEt and H₂O. The separated organic layer was rinsed with H₂O and dried over anhydrous MgSO₄. Removal of the solvent gave the product (7) (240 mg, 42.6% from 3). ESI-MS *m/z* 1126 (M+H)⁺.

N-4909 (1)

A suspension of the benzyl ester (7) (240 mg, 0.21 mmol) and 10% Pd-C (60 mg) in EtOH (30 ml) was reacted under H₂ atomosphere (~1 kg/cm²) at room temperature for 3 hours. After filtration and evaporation, the crude product was obtained. This had 63% purity by HPLC analysis (column, PEGASIL ODS (4.6×250 mm); mobile phase, MeOH: H₂O=95:5; flow rate, 1.0 ml/min; detection, UV 222 nm). This was purified by HPLC under the following conditions (column, Inertsil PREP-ODS (30×250 mm); mobile phase, MeOH: H₂O: TFA=93: 7:0.05; flow rate, 30 ml/min; detection, UV 222 nm) to yield the product (126 mg, 58.1%).

 $[\alpha]_D^{26} - 13.1^{\circ}$ (c 1.26, CH₃OH). [lit.¹⁾ $[\alpha]_D^{26} - 11.2^{\circ}$ (c 0.414, CH₃OH)]. ¹H NMR (400 MHz, CDCl₃) δ 12.30 (1H, br s), 8.37 (1H, d, J=6.8 Hz), 8.30 (1H, d, J=7.8 Hz), 8.11 (1H, d, J=7.3 Hz), 7.79~7.96 (4H, m), 7.30 (1H, s), 6.86 (1H, s), 4.90~5.02 (1H, m), 4.43~4.67 (2H, m), 4.03~4.29 (5H, m), 2.73 (1H, d, J=11.2 Hz), 2.65 (1H, d, J=7.3 Hz), 2.25~2.44 (2H, m), 1.95~2.15 (3H, m), 1.67~1.93 (3H, m), 1.07~1.63 (29H, m), 0.61~0.93 (36H, m). High-resolution FAB-MS (positive) m/z 1035.7100 [calcd for C₅₃H₉₄N₈O₁₂ (M+H)⁺; 1035.7069]

References

- HIRAMOTO, S.; N. KINOSHITA, S. HATANAKA & H. SETO: Stimulation of apolipoprotein E secretion in human hepatoma Hep G2 cells by a cyclic acylpeptide, N-4909. J. Antibiotics 49: 949~952, 1996
- HASUMI, K.; K. TAKIZAWA, F. TAKAHASHI, J. K. PARK & A. ENDO: Inhibition of acyl-CoA: Cholesterol acyltransferase by isohalobacillin, a complex of novel cyclic acylpeptides produced by *Bacillus* sp. A1238. J. Antibiotics 48: 1419~1424, 1995
- YANAI, M. & S. HIRAMOTO: First total synthesis of N-4909 and its diastereomer; A stimulant of apolipoprotein E secretion in human hepatoma Hep G2 cells. J. Antibiotics 52: 150~159, 1999
- LEE, BYUNG H.: Solid-phase synthesis of cyclooctadepsipeptide PF1022A analogs using a cyclization-cleavage method with oxime resin. Tetrahedron Letters 38:

757~760, 1997

- DEGRADO, W. F. & E. T. KAISER: Polymer-bound oxime esters as supports for solid-phase peptide synthesis. Preparation of protected peptide fragments. J. Org. Chem. 45: 1295~1300, 1980
- 6) ÖSAPAY, G.; A. PROFIT & J. W. TAYOR: Synthesis of tyrocidine A: Use of oxime resin for peptide chain and cyclization. Tetrahedron Letters 31: 6121~6124, 1990
- 7) ÖSAPAY, G. & J. W. TAYOR: Multicyclic polypeptide model compounds. 1. Synthesis of a tricyclic amphilic

 $\alpha\text{-helical}$ peptide using an oxime resin. Segment-condensation approach. J. Am. Chem. Soc. 112: 6046~6051, 1990

- UENO, U.; H. KUMAGAYA & N. NISHINO (Asahi Glass Co. Ltd.): Cyclic Peptides Preparation. JP 5025196, February 2, 1993
- 9) KAISER, E.; R. L. COESCOTT, C. D. BOSSINGER & P. I. COOK: Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal. Biochem. 34: 595~598, 1970